

NSL-37V71

1.5KΩ ON-Resistance Photocell (CdS) Output Optocoupler

The NSL-37V71 is an optocoupler that has an OFF-resistance of 1M $\!\Omega$.

Advanced Photonix CdS photocell output optocouplers optically couple an LED to a CdS Light Dependent Resistor (LDR). The LDR resistance increases when the LED current is OFF and decreases when LED current is ON. The device showcases a large dynamic range with a response time that efficiently mimics the human eye's sensitivity to light changes. Engineered with High, Medium, and Low dark resistances, the optocouplers are available with diverse resistance values to suit various applications. The photocells are encased in an optically-isolated structures.

Applications

Industrial

Features

Compact Moisture Resistant Package Low LED Current Passive Resistance Output

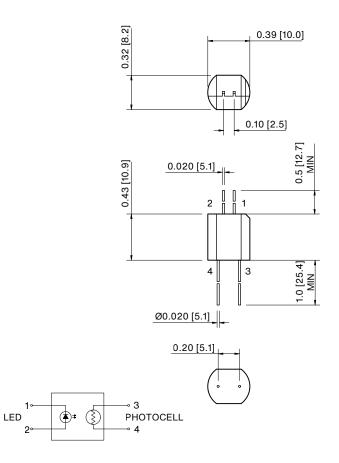
Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit				
Isolation Voltage	V _{ISO}	-	2500	V				
Operating Temperature	T _{op}	-40	+75	°C				
Storage Temperature	T _{stg}	-40	+75	°C				
Package	Plastic							

Typical Electro-Optical Specifications at $T_A = 25 \text{ °C}$

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
LED						
Forward Current	-	I _F	-	-	40	mA
Forward Voltage	I _r =20mA	V _F	-	-	2.5	V
Reverse Voltage	-	V _R	-	-	3.0	V
PHOTOCELL						
Maximum Photocell Voltage	Peak AC or DC	V _c	-	-	100	V
Power Dissipation ¹	-	P _D	-	-	175	mW
COUPLED						
On-Resistance	I _r =2.0mA	R_{on}	-	1.1	1.5	ΚΩ
Off Resistance	10 sec after I _f =0mA	R _{off}	1	-	-	MΩ
Rise Time	Time to 63% of final conductance @ I _r =2.0mA	T _R	-	6.0	-	msec
Decay Time	Time to 100K Ω from removal of I _f =2.0mA	T _F	-	-	1	sec

¹Derate linearly to 0 at 75° C.


²The Rise Time, T_a, is the time required for the dark to light change in conductance to reach 63% of its final value

Mechanical Specifications

Units are in inch [mm]

General Care and Handling Instructions

Photodiodes:

Handling and Storage

- Handle Photodiodes gently to prevent damage.
- Avoid exposing Photodiodes to temperatures exceeding the storage temperature rating of the device.
- Maintain a non-condensing environment for optimum performance and lifetime.

Cleaning

 Gently clean the glass (borosilicate or quartz window) using a 50/50 mixture of Methanol and isopropyl alcohol and a soft, optical-grade pad.

Special Considerations for Plastic or Epoxy Encapsulated Photodiodes

- Protect from intense light sources such as direct sunlight.
- Avoid exposure to harsh chemicals like THINNERS, ACETONE, and TRICHLOROETHYLENE.
- Cleaning with a 50/50 mixture of Methanol and isopropyl alcohol (IPA) is recommended. Cleaning in an ultrasonic bath is generally not recommended.

CdS Photocells:

Handling and Storage

- Handle CdS Photocells gently to prevent damage.
- Avoid exposing CdS Photocells to temperatures exceeding the storage temperature rating of the device.
- Maintain a non-condensing environment for optimum performance and lifetime.

Cleaning

- Gently clean the glass or plastic covering using a 50/50
- mixture of Methanol and isopropyl alcohol and a soft, opticalgrade pad.

Special Considerations

 DO NOT use Vapor Phase Soldering or Reflow Soldering for CdS components.

Optocouplers and LEDs:

Handling and Storage

- Handle Optocouplers and LEDs gently to prevent damage.
- Avoid exposing the devices to temperatures exceeding the storage temperature rating of the device.
- Maintain a non-condensing environment for optimum performance and lifetime.

Cleaning

 For plastic molded devices, cleaning with a 50/50 mixture of Methanol and isopropyl alcohol is recommended. Cleaning in an ultrasonic bath is generally not recommended.

Special Considerations

 Avoid exposing plastic molded devices or epoxy glob top devices to harsh chemicals like THINNERS, ACETONE, and TRICHLOROETHYLENE.

Legal Disclaimer

Information in this data sheet is believed to be correct and reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice.

Electrostatic Discharge (ESD) Sensitivity:

All devices are considered ESD-sensitive. They are shipped in ESD protective packaging. When unpacking and using these products, anti-ESD precautions should be observed.

Lead Trimming and Bending:

Standard lead trimming after soldering is an acceptable practice; however, do not attempt to bend or modify the leads incorrectly, as it can damage the glass feed-through or the plastic encapsulant.

Soldering Instructions:

Use a soldering iron with a tip temperature of 300°C max. Consult with your preferred solder manufacturer to determine a solder alloy and flux combination, as well as the reflow profile appropriate for your application.

General Precautions for all Devices

1. Moisture Prevention:

Ensure devices are stored in a dry environment to prevent moisture ingress, which can cause damage during soldering. Refer to J-STD-20 for guidance on proper baking procedures to prevent moisture related damage.

2. Lead Splaying:

If required, carefully splay the leads of the devices according to the specific application needs. Be cautious when splaying leads, as improper techniques may damage the device. Consult technical support or device datasheets for guidance on lead splaying.

3. Mechanical Stress:

Handle devices with care throughout the installation process to prevent damage.

4. Circuit Protection and Layout:

Optimize the circuit design and layout to ensure proper functioning and prevent damage to the devices. Include appropriate protection measures like ESD protection diodes, current-limiting resistors, and voltage regulation.

5. After-Sale Support:

For troubleshooting and device-specific inquiries, please consult with our technical support team. They can offer valuable guidance and suggestions on handling, operation, and application-related questions. To reach them, please contact the Advanced Photonix Applications group at Techsupport@advancedphotonix.com.